跳转至

附录

\(\vec{r}/r^3\) 形式矢量场的曲线积分

Image title
\(\vec{r}/r^3\) 形式的矢量场

如上图所示,矢量场 \(\vec{F}\) 在点 \(P\) 处为 \(\displaystyle \vec{F} = k \frac{\vec{r}}{r^3}\),其中,\(\vec{r}\) 为点 \(P\) 相对于原点 \(O\) 的位置矢量,\(r = \abs{\vec{r}\tm}\)\(k\) 为常数

沿着路径 \(L\) 从点 \(A\) 到点 \(B\),矢量场 \(\vec{F}\) 的曲线积分

\[ \int_L \vec{F} \cdot \d{\vec{r}} = k \int_L \frac{\vec{r} \cdot \d{\vec{r}}}{r^3} \tag{1} \label{eq:curve-integral} \]

其中,根据对标量积求微分的法则

\[ \d{\rb{\vec{r} \cdot \vec{r}\tm}} = \vec{r} \cdot \d{\vec{r}} + \d{\vec{r}} \cdot \vec{r} \ \Rightarrow\ \vec{r} \cdot \d{\vec{r}} = \frac{1}{2} \d{\rb{\vec{r} \cdot \vec{r}\tm}} = \frac{1}{2} \d{\rb{r^2\tm }} = r \,\d{r} \]
\[ \begin{align} & \d{\rb{\vec{r} \cdot \vec{r}\tm}} = \vec{r} \cdot \d{\vec{r}} + \d{\vec{r}} \cdot \vec{r} \\ & \Rightarrow\ \vec{r} \cdot \d{\vec{r}} = \frac{1}{2} \d{\rb{\vec{r} \cdot \vec{r}\tm}} = \frac{1}{2} \d{\rb{r^2\tm }} = r \,\d{r} \end{align} \]
直角坐标系中推导上式

在直角坐标系中

\[ \vec{r} = x \,\vec{i} + y \,\vec{j} + z \,\vec{k},\ \d{\vec{r}} = \d{x} \,\vec{i} + \d{y} \,\vec{j} + \d{z} \,\vec{k} \]

因此

\[ \begin{align} & \vec{r} \cdot \d{\vec{r}} = x \,\d{x} + y \,\d{y} + z \,\d{z} = \frac{1}{2} \d{x^2} + \frac{1}{2} \d{y^2} + \frac{1}{2} \d{z^2} \\ & = \frac{1}{2} \d{\rb{x^2 + y^2 + z^2}} = \frac{1}{2} \d{\rb{r^2}} = r \,\d{r} \end{align} \]

\[ \begin{align} & \vec{r} \cdot \d{\vec{r}} = x \,\d{x} + y \,\d{y} + z \,\d{z} \\ & = \frac{1}{2} \d{x^2} + \frac{1}{2} \d{y^2} + \frac{1}{2} \d{z^2} \\ & = \frac{1}{2} \d{\rb{x^2 + y^2 + z^2}} \\ & = \frac{1}{2} \d{\rb{r^2}} = r \,\d{r} \end{align} \]

将上式的结果代入式 \(\eqref{eq:curve-integral}\),原先对 \(L\) 的曲线积分就转变为了对距离 \(r\) 的一元函数积分

\[ k \int_L \frac{\vec{r} \cdot \d{\vec{r}}}{r^3} = k \int_{r_A}^{r_B} \frac{r \,\d{r}}{r^3} = \left. \frac{-k}{r} \right|_{r_A}^{r_B} = k \rb{\frac{1}{r_A} - \frac{1}{r_B}} \]
\[ \begin{align} & k \int_L \frac{\vec{r} \cdot \d{\vec{r}}}{r^3} = k \int_{r_A}^{r_B} \frac{r \,\d{r}}{r^3} = \left. \frac{-k}{r} \right|_{r_A}^{r_B} \\ & = k \rb{\frac{1}{r_A} - \frac{1}{r_B}} \end{align} \]

上述结果表明,矢量场 \(\vec{F}\) 的曲线积分 \(\eqref{eq:curve-integral}\)\(A\)\(B\) 两点之间路径 \(L\) 的选择无关,只取决于它们到原点的距离

若一个矢量场的曲线积分结果与路径选择无关,只与始末位置有关,则该矢量场被称为“保守场”,显然,本例中的 \(\vec{F}\) 就是一个保守场

\(1/\abs{\vec{r}-\vec{q}\tm}\) 梯度的计算

在直角坐标系中

\[ \vec{r} = x \,\vec{i} + y \,\vec{j} + z \,\vec{k},\ \vec{q} = x' \,\vec{i} + y' \,\vec{j} + z' \,\vec{k} \]

\[ \frac{1}{\abs{\vec{r}-\vec{q}\tm}} = \frac{1}{\sqrt{\rb{x-x'}^2 + \rb{y-y'}^2 + \rb{z-z'}^2}} \]

考虑只对 \(\vec{r}\) 中的空间变量求导的梯度算符 \(\nabla\)

\[ \nabla f = \frac{\partial f}{\partial x} \,\vec{i} + \frac{\partial f}{\partial y} \,\vec{j} + \frac{\partial f}{\partial z} \,\vec{k} \]

将其中的 \(f\)\(\displaystyle \frac{1}{\abs{\vec{r}-\vec{q}\tm}}\) 替换,得到

\[ \frac{\partial}{\partial x} \frac{1}{\abs{\vec{r}-\vec{q}\tm}} = -\frac{1}{2} \frac{2\rb{x-x'}}{\sb{\rb{x-x'}^2 + \rb{y-y'}^2 + \rb{z-z'}^2}^{3/2}} = - \frac{\rb{x-x'}}{\abs{\vec{r}-\vec{q}\tm}^3} \]
\[ \begin{align} & \frac{\partial}{\partial x} \frac{1}{\abs{\vec{r}-\vec{q}\tm}} \\ & = -\frac{1}{2} \frac{2\rb{x-x'}}{\sb{\rb{x-x'}^2 + \rb{y-y'}^2 + \rb{z-z'}^2}^{3/2}} \\ & = - \frac{\rb{x-x'}}{\abs{\vec{r}-\vec{q}\tm}^3} \end{align} \]

类似的

\[ \frac{\partial}{\partial y} \frac{1}{\abs{\vec{r}-\vec{q}\tm}} = - \frac{\rb{y-y'}}{\abs{\vec{r}-\vec{q}\tm}^3},\ \frac{\partial}{\partial z} \frac{1}{\abs{\vec{r}-\vec{q}\tm}} = - \frac{\rb{z-z'}}{\abs{\vec{r}-\vec{q}\tm}^3} \]
\[ \begin{gather} \frac{\partial}{\partial y} \frac{1}{\abs{\vec{r}-\vec{q}\tm}} = - \frac{\rb{y-y'}}{\abs{\vec{r}-\vec{q}\tm}^3} \\ \frac{\partial}{\partial z} \frac{1}{\abs{\vec{r}-\vec{q}\tm}} = - \frac{\rb{z-z'}}{\abs{\vec{r}-\vec{q}\tm}^3} \end{gather} \]

因此

\[ \nabla \frac{1}{\abs{\vec{r}-\vec{q}\tm}} = - \frac{\rb{x-x'}\,\vec{i} + \rb{y-y'}\,\vec{j} + \rb{z-z'}\,\vec{k}}{\abs{\vec{r}-\vec{q}\tm}^3} = \hlt{ - \frac{\vec{r}-\vec{q}\tm}{\abs{\vec{r}-\vec{q}\tm}^3} } \]
\[ \begin{align} & \nabla \frac{1}{\abs{\vec{r}-\vec{q}\tm}} \\ & = - \frac{\rb{x-x'}\,\vec{i} + \rb{y-y'}\,\vec{j} + \rb{z-z'}\,\vec{k}}{\abs{\vec{r}-\vec{q}\tm}^3} \\ & = \hlt{ - \frac{\vec{r}-\vec{q}\tm}{\abs{\vec{r}-\vec{q}\tm}^3} } \end{align} \]