物理常数

常数名称 (中文) 符号 数值 单位 备注
真空中的光速 \(c\) \(299\,792\,458\) (精确值) \(\text{m} \cdot \text{s}^{-1}\) SI定义值
普朗克常数 \(h\) \(6.626\,070\,15 \times 10^{-34}\) (精确值) \(\text{J} \cdot \text{s}\) SI定义值
基本电荷 \(e\) \(1.602\,176\,634 \times 10^{-19}\) (精确值) \(\text{C}\) SI定义值
万有引力常数 \(G\) \(6.674\,30(15) \times 10^{-11}\) \(\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}\) 基本常数 (实验测定)
玻尔兹曼常数 \(k_B\) (或 \(k\)) \(1.380\,649 \times 10^{-23}\) (精确值) \(\text{J} \cdot \text{K}^{-1}\) SI定义值
阿伏伽德罗常数 \(N_A\) (或 \(L\)) \(6.022\,140\,76 \times 10^{23}\) (精确值) \(\text{mol}^{-1}\) SI定义值
精细结构常数 \(\alpha\) \(7.297\,352\,569\,3(11) \times 10^{-3}\) (无量纲) \(\displaystyle \alpha = \frac{e^2}{4\pi\epsilon_0\hbar c}\)
里德伯常数 \(R_\infty\) \(10\,973\,731.568\,160(21)\) \(\text{m}^{-1}\) \(\displaystyle R_\infty = \frac{m_e e^4}{8 \epsilon_0^2 h^3 c}\)
电子质量 \(m_e\) \(9.109\,383\,701\,5(28) \times 10^{-31}\) \(\text{kg}\) 基本常数 (实验测定)
质子质量 \(m_p\) \(1.672\,621\,923\,69(51) \times 10^{-27}\) \(\text{kg}\) 基本常数 (实验测定)
中子质量 \(m_n\) \(1.674\,927\,498\,04(95) \times 10^{-27}\) \(\text{kg}\) 基本常数 (实验测定)
真空电容率 (电常数) \(\epsilon_0\) \(8.854\,187\,812\,8(13) \times 10^{-12}\) \(\text{F} \cdot \text{m}^{-1}\) \(\displaystyle \epsilon_0 = \frac{1}{\mu_0 c^2}\) (基于实验测定的 \(\mu_0\) 和精确的 \(c\))
真空磁导率 (磁常数) \(\mu_0\) \(1.256\,637\,062\,12(19) \times 10^{-6}\) \(\text{N} \cdot \text{A}^{-2}\) (或 \(\text{H} \cdot \text{m}^{-1}\)) 基本常数 (实验测定,曾为SI定义值 \(4\pi \times 10^{-7} \text{ H} \cdot \text{m}^{-1}\))
约化普朗克常数 (狄拉克常数) \(\hbar\) \(1.054\,571\,817... \times 10^{-34}\) (精确值) \(\text{J} \cdot \text{s}\) \(\displaystyle \hbar = \frac{h}{2\pi}\)
玻尔磁子 \(\mu_B\) \(9.274\,010\,078\,3(28) \times 10^{-24}\) \(\text{J} \cdot \text{T}^{-1}\) \(\displaystyle \mu_B = \frac{e\hbar}{2m_e}\)
核磁子 \(\mu_N\) \(5.050\,783\,746\,1(15) \times 10^{-27}\) \(\text{J} \cdot \text{T}^{-1}\) \(\displaystyle \mu_N = \frac{e\hbar}{2m_p}\)
电子磁矩 \(\mu_e\) \(-9.284\,764\,704\,3(28) \times 10^{-24}\) \(\text{J} \cdot \text{T}^{-1}\) \(\displaystyle \mu_e \approx -\frac{g_e \mu_B}{2}\) (与电子g因子相关)
质子磁矩 \(\mu_p\) \(1.410\,606\,797\,36(60) \times 10^{-26}\) \(\text{J} \cdot \text{T}^{-1}\) \(\displaystyle \mu_p \approx \frac{g_p \mu_N}{2}\) (与质子g因子相关)
中子磁矩 \(\mu_n\) \(-9.662\,365\,1(23) \times 10^{-27}\) \(\text{J} \cdot \text{T}^{-1}\) 实验测定值
约瑟夫森常数 \(K_J\) \(483\,597.848\,4... \times 10^9\) (精确值) \(\text{Hz} \cdot \text{V}^{-1}\) \(\displaystyle K_J = \frac{2e}{h}\)
冯·克利青常数 \(R_K\) \(25\,812.807\,45...\) (精确值) \(\Omega\) \(\displaystyle R_K = \frac{h}{e^2}\)
磁通量子 \(\Phi_0\) \(2.067\,833\,848... \times 10^{-15}\) (精确值) \(\text{Wb}\) \(\displaystyle \Phi_0 = \frac{h}{2e}\)
电导量子 \(G_0\) \(7.748\,091\,729... \times 10^{-5}\) (精确值) \(\text{S}\) \(\displaystyle G_0 = \frac{2e^2}{h}\)
真空特性阻抗 \(Z_0\) \(376.730\,313\,668(57)\) \(\Omega\) \(\displaystyle Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = \mu_0 c\)
玻尔半径 \(a_0\) \(0.529\,177\,210\,544(82) \times 10^{-10}\) \(\text{m}\) \(\displaystyle a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = \frac{\hbar}{m_e c \alpha}\)
电子康普顿波长 \(\lambda_C\) \(2.426\,310\,235\,9(12) \times 10^{-12}\) \(\text{m}\) \(\displaystyle \lambda_C = \frac{h}{m_e c}\)
质子康普顿波长 \(\lambda_{C,p}\) \(1.321\,409\,855\,39(40) \times 10^{-15}\) \(\text{m}\) \(\displaystyle \lambda_{C,p} = \frac{h}{m_p c}\)
经典电子半径 \(r_e\) \(2.817\,940\,323\,0(13) \times 10^{-15}\) \(\text{m}\) \(\displaystyle r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2}\)
汤姆逊散射截面 \(\sigma_e\) \(0.665\,245\,870\,51(62) \times 10^{-28}\) \(\text{m}^2\) \(\displaystyle \sigma_e = \frac{8\pi}{3}r_e^2\)
统一原子质量单位 \(\text{u}\) (或 \(\text{amu}\)) \(1.660\,539\,068\,92(52) \times 10^{-27}\) \(\text{kg}\) \(1 \text{ u} = \frac{1}{N_A} \text{ g}\) (基于 \(^{12}\text{C}\) 定义,或实验测定)
电子的g因子 \(g_e\) \(-2.002\,319\,304\,362\,56(35)\) (无量纲) 实验测定值 (QED 理论可计算)
质子的g因子 \(g_p\) \(5.585\,694\,689\,6(88)\) (无量纲) 实验测定值
摩尔气体常数 \(R\) \(8.314\,462\,618\,153\,24\) (精确值) \(\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}\) \(\displaystyle R = N_A k_B\)
斯忒藩-玻尔兹曼常数 \(\sigma\) \(5.670\,374\,419... \times 10^{-8}\) (精确值) \(\text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}\) \(\displaystyle \sigma = \frac{\pi^2 k_B^4}{60 \hbar^3 c^2}\)
第一辐射常数 \(c_1\) \(3.741\,771\,852... \times 10^{-16}\) (精确值) \(\text{W} \cdot \text{m}^2\) \(\displaystyle c_1 = 2\pi h c^2\)
第二辐射常数 \(c_2\) \(1.438\,776\,877... \times 10^{-2}\) (精确值) \(\text{m} \cdot \text{K}\) \(\displaystyle c_2 = \frac{hc}{k_B}\)
维恩位移定律常数 \(b\) (或 \(w\)) \(2.897\,771\,955... \times 10^{-3}\) (精确值) \(\text{m} \cdot \text{K}\) \(\displaystyle b = \frac{c_2}{\lambda_{\text{max}}T/ (\text{hc}/k_B)} \approx \frac{hc}{4.965114 k_B}\) (数值解相关)
法拉第常数 \(F\) \(96\,485.332\,12...\) (精确值) \(\text{C} \cdot \text{mol}^{-1}\) \(\displaystyle F = N_A e\)
标准重力加速度 \(g_n\) (或 \(g_0\)) \(9.806\,65\) (精确值,按定义) \(\text{m} \cdot \text{s}^{-2}\) 地球表面约定标准值