跳转至

标量积和矢量积

标量积

标量积,又名“点积”、“内积”,是由两个矢量参与并得到一个标量的运算

标量积反映了反映了两个矢量在同一方向上投影的乘积

公式表述

对于矢量 \(\vec{a}\)\(\vec{b}\),它们的大小分别用 \(a\)\(b\) 表示,其标量积的写为 \(\vec{a} \cdot \vec{b}\)

注意\(\vec{a}\)\(\vec{b}\) 之间的点“ \(\cdot\) ”不能省略,也不能写为“\(\times\)

计算规则

  • 标量积 \(\vec{a} \cdot \vec{b}\)\(\vec{a}\)\(\vec{b}\) 上的投影(\(a \cos\theta\) )再乘以 \(\vec{b}\) 的长度,或 \(\vec{b}\)\(\vec{a}\) 上的投影(\(b \cos\theta\) )再乘以 \(\vec{a}\) 的长度

    \[ \vec{a} \cdot \vec{b} = a \tm b \cos\theta \]

    其中,\(\theta\)\(\vec{a}\)\(\vec{b}\) 之间的夹角

  • 在直角坐标系中遵循对应分量乘积相加

    \[ \vec{a} \cdot \vec{b} = a_x \tm b_x + a_y \tm b_y + a_z \tm b_z \]

标量积的特性

  • 交换律:标量积的结果与矢量的顺序无关,\(\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}\)
  • 分配律:标量积对矢量加法具有分配性,\(\vec{a} \cdot \rb{\vec{b} + \vec{c}} = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}\)
  • 数乘结合律:\(\big(k \vec{a} \tm\big) \cdot \vec{b} = k \big(\vec{a} \cdot \vec{b}\tm\big)\)
  • 正交性:如果 \(\vec{a} \cdot \vec{b} = 0\),则 \(\vec{a}\)\(\vec{b}\) 正交(垂直),反过来也成立
  • 模的平方:一个矢量与自身的标量积等于其模的平方,\(\vec{a} \cdot \vec{a} = a^2\)
  • 夹角关系:标量积可以用来计算两个矢量之间的夹角 \(\theta\)

    \[ \cos\theta = \frac{\vec{a} \cdot \vec{b}}{a \tm b} \]

矢量积

矢量积,又名“叉积”、“外积”,是由两个矢量参与并得到为一个新矢量的运算

矢量积反映了由两个矢量确定的平行四边形的有向面积

公式表述

对于矢量 \(\vec{a}\)\(\vec{b}\),它们的大小分别用 \(a\)\(b\) 表示,其矢量积的写为 \(\vec{a} \times \vec{b}\)

注意\(\vec{a}\)\(\vec{b}\) 之间的乘号“\(\times\)”不能省略或写成点“ \(\cdot\) ”,\(\vec{a}\times\vec{b}\) 通常也不等于 \(\vec{b}\times\vec{a}\)

计算规则

如下图所示,矢量积 \(\vec{a} \times \vec{b}\) 的结果为 \(\vec{c}\)

Image title
矢量积

则矢量 \(\vec{c}\)

  • 大小: \(a \tm b \sin\theta\),其中,\(\theta\)\(\vec{a}\)\(\vec{b}\) 之间的夹角(不超过 \(180^\circ\)),以 \(\vec{a}\)\(\vec{b}\) 为邻边的平行四边形的面积
  • 方向:垂直于 \(\vec{a}\)\(\vec{b}\) 所确定的平面 \(S\)\(\vec{c} \perp \vec{a}, \ \vec{c} \perp \vec{b}\tm\)),且与 \(\vec{a}\)\(\vec{b}\) 满足右手螺旋关系

右手螺旋关系

如下图所示,矢量 \(\vec{c}\) 的方向可由右手螺旋定则确定

Image title
矢量积 \(\vec{a} \times \vec{b}\) 的右手螺旋定则

  1. 右手四指并拢伸直,指向与矢量 \(\vec{a}\) 的方向一致
  2. 想象矢量 \(\vec{a}\) 在平面 \(S\) 内沿着小于 \(180^\circ\) 的角度旋转至矢量 \(\vec{b}\) 的方向,同时使四指沿旋转方向微微弯曲
  3. 立起右手大拇指,其指向即为矢量 \(\vec{a} \times \vec{b}\) 的方向
  • 单位矢量 \(\vec{i},\ \vec{j},\ \vec{k}\) 之间的矢量积(请根据右手矢量积的计算规则自行验证)

    \[ \begin{gather} \vec{i} \times \vec{j} = \vec{k},\ \vec{j} \times \vec{i} = -\vec{k}\\ \vec{j} \times \vec{k} = \vec{i},\ \vec{k} \times \vec{j} = -\vec{i}\\ \vec{k} \times \vec{i} = \vec{j},\ \vec{i} \times \vec{k} = -\vec{j}\\ \vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0} \end{gather} \]
  • 在直角坐标系中

    \[ \begin{align} &\vec{a} \times \vec{b} = \left( a_x \vec{i} + a_y \vec{j} + a_z \vec{k} \right) \times \left( b_x \vec{i} + b_y \vec{j} + b_z \vec{k} \right) \\ &= \left( a_y \tm b_z - a_z \tm b_y \right) \vec{i} + \left( a_z \tm b_x - a_x \tm b_z \right) \vec{j} + \left( a_x \tm b_y - a_y \tm b_x \right) \vec{k} \tag{1} \label{eq:cross-product} \end{align} \]

    \[ \begin{align} &\vec{a} \times \vec{b} = \left( a_x \vec{i} + a_y \vec{j} + a_z \vec{k} \right) \\ &\times \left( b_x \vec{i} + b_y \vec{j} + b_z \vec{k} \right) \\ &= \left( a_y \tm b_z - a_z \tm b_y \right) \vec{i} \\ &+ \left( a_z \tm b_x - a_x \tm b_z \right) \vec{j} \\ &+ \left( a_x \tm b_y - a_y \tm b_x \right) \vec{k} \tag{1} \end{align} \]

    \(\vec{c} = \vec{a} \times \vec{b}\),则

    \[ \begin{gather} c_x = a_y \tm b_z - a_z \tm b_y \\ c_y = a_z \tm b_x - a_x \tm b_z \\ c_z = a_x \tm b_y - a_y \tm b_x \end{gather} \]

    规律:

    • \(c\)\(a\)\(b\) 的下标只能不重复地从 \(x\)\(y\)\(z\) 中选一个
    • \(c\)\(a\)\(b\) 的下标构成的序列为 \(xyz, \ yzx, \ zxy\) 中的一个,则此项的符号为,否则为

    公式 \(\eqref{eq:cross-product}\) 的结果也可以用行列式表示:

    \[ \begin{align} &\vec{a} \times \vec{b} = \left|\, \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{matrix}\right| \end{align} \]

    \[ \begin{align} &\vec{a} \times \vec{b} = \left|\, \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{matrix}\right| \end{align} \]

    将此行列式按照首行展开

    \[ \begin{align} &= \vec{i} \left|\tm \begin{matrix} a_y & a_z \\ b_z & b_x \end{matrix}\right| - \vec{j} \left|\tm \begin{matrix} a_x & a_z \\ b_x & b_z \end{matrix}\right| + \vec{k} \left|\tm \begin{matrix} a_x & a_y \\ b_y & b_z \end{matrix}\right| \\ &= \left( a_y \tm b_z - a_z \tm b_y \right) \vec{i} + \left( a_z \tm b_x - a_x \tm b_z \right) \vec{j} + \left( a_x \tm b_y - a_y \tm b_x \right) \vec{k} \end{align} \]

    \[ \begin{align} &= \vec{i} \left|\tm \begin{matrix} a_y & a_z \\ b_z & b_x \end{matrix}\right| - \vec{j} \left|\tm \begin{matrix} a_x & a_z \\ b_x & b_z \end{matrix}\right| + \vec{k} \left|\tm \begin{matrix} a_x & a_y \\ b_y & b_z \end{matrix}\right| \\ &= \left( a_y \tm b_z - a_z \tm b_y \right) \vec{i} + \left( a_z \tm b_x - a_x \tm b_z \right) \vec{j}\\ &+ \left( a_x \tm b_y - a_y \tm b_x \right) \vec{k} \end{align} \]

矢量积的特性

  • 反交换律:顺序改变,方向相反,\(\vec{a} \times \vec{b} = - \tm \vec{b} \times \vec{a}\)
  • 分配律:矢量积对矢量加法和减法具有分配性,\(\vec{a} \times \rb{\vec{b} + \vec{c}} = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}\)
  • 结合律(对于标量乘法):\(\rb{k \vec{a}} \times \vec{b} = k \big(\vec{a} \times \vec{b} \tm\big) = \vec{a} \times \big(k \vec{b} \tm \big)\)
  • 判断平行:若 \(\vec{a} \times \vec{b} = \vec{0}\),则 \(\vec{a} \parallel \vec{b}\),反过来也成立

    特例:\(\vec{a} \times \vec{a} = \vec{0}\)

标量积和矢量积的混合运算

在包含标量积和矢量积的混合运算表达式中,矢量积的运算优先级高于标量积

在没有括号的情况下,应先计算矢量积,再计算标量积

例如:\(\vec{a} \cdot \vec{b} \times \vec{c}\) 的含义为:\(\vec{a} \cdot \big(\tm \vec{b} \times \vec{c} \tm\big)\)

标量三重积

标量三重积的形式为 \(\vec{a} \cdot \big(\tm \vec{b} \times \vec{c} \tm\big)\)\(\big(\tm \vec{u} \times \vec{v} \tm\big) \cdot \vec{w}\)

标量三重积的结果为一个标量,其绝对值等于以 \(\vec{a}, \, \vec{b}, \, \vec{c}\) 为棱的平行六面体的体积

直角坐标系中的计算

\[ \begin{align} &\vec{b} \times \vec{c} = \left|\tm \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{matrix}\right| \\ &= (b_y \tm c_z - b_z \tm c_y) \tm\vec{i} + (b_z \tm c_x - b_x \tm c_z) \tm\vec{j} + (b_x \tm c_y - b_y \tm c_x) \tm\vec{k} \end{align} \]
\[ \begin{align} &\vec{b} \times \vec{c} = \left|\tm \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{matrix}\right| \\ &= (b_y \tm c_z - b_z \tm c_y) \tm\vec{i} + (b_z \tm c_x - b_x \tm c_z) \tm\vec{j} \\ &+ (b_x \tm c_y - b_y \tm c_x) \tm\vec{k} \end{align} \]

因此,

\[ \begin{align} &\vec{a} \cdot \big(\tm \vec{b} \times \vec{c} \tm\big)\\ &= a_x \tm (b_y \tm c_z - b_z \tm c_y) + a_y \tm (b_z \tm c_x - b_x \tm c_z) + a_z \tm (b_x \tm c_y - b_y \tm c_x) \\ &= \left|\tm \begin{matrix} a_x & a_y & a_z \\ b_y & b_z & b_x \\ c_z & c_x & c_y \end{matrix}\right| \tag{2} \label{eq:stp} \end{align} \]
\[ \begin{align} &\vec{a} \cdot \big(\tm \vec{b} \times \vec{c} \tm\big) = a_x \tm (b_y \tm c_z - b_z \tm c_y) \\ &+ a_y \tm (b_z \tm c_x - b_x \tm c_z) \\ &+ a_z \tm (b_x \tm c_y - b_y \tm c_x) \\ &= \left|\tm \begin{matrix} a_x & a_y & a_z \\ b_y & b_z & b_x \\ c_z & c_x & c_y \end{matrix}\right| \tag{2} \end{align} \]

轮换性:\(\vec{a} \cdot \big(\tm \vec{b} \times \vec{c} \tm\big) = \vec{b} \cdot \big(\tm \vec{c} \times \vec{a} \tm\big) = \vec{c} \cdot \big(\tm \vec{a} \times \vec{b} \tm\big)\)

轮换性的说明

根据式 \(\eqref{eq:stp}\)

\[ \vec{b} \cdot \big(\tm \vec{c} \times \vec{a} \tm\big) = \left|\tm \begin{matrix} b_x & b_y & b_z \\ c_x & c_y & c_z \\ a_x & a_y & a_z \end{matrix}\right| \]

该行列式相当于 \(\eqref{eq:stp}\) 中行列式依次作下列两次行交换

\[ r_2 \leftrightarrow r_3,\ r_1 \leftrightarrow r_2 \]

根据行列式的性质,进行偶数次行交换,行列式的值保持不变。类似的,\(\vec{c} \cdot \big(\tm \vec{a} \times \vec{b} \tm\big)\) 也有等值的行列式

矢量三重积

矢量三重积的形式为 \(\vec{a} \times \big(\tm \vec{b} \times \vec{c} \tm\big)\)\(\big(\tm \vec{u} \times \vec{v} \tm\big) \times \vec{w}\),其结果为一个矢量

重要结论

\[ \vec{a} \times \big(\tm \vec{b} \times \vec{c} \tm\big) = \big( \vec{a} \cdot \vec{c} \tm\big) \tm\vec{b} - \big( \vec{a} \cdot \vec{b} \tm\big) \tm\vec{c} \tag{3} \label{eq:tvp} % triple vector product \]

直角坐标系中的证明

计算 \(\vec{b} \times \vec{c}\)

\[ \vec{b} \times \vec{c} = \left|\tm \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{matrix}\right| = (b_y \tm c_z - b_z \tm c_y) \tm\vec{i} + (b_z \tm c_x - b_x \tm c_z) \tm\vec{j} + (b_x \tm c_y - b_y \tm c_x) \tm\vec{k} \]

\[ \begin{align} &\vec{b} \times \vec{c} = \left|\tm \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{matrix}\right| \\ &= (b_y \tm c_z - b_z \tm c_y) \tm\vec{i} + (b_z \tm c_x - b_x \tm c_z) \tm\vec{j} \\ & + (b_x \tm c_y - b_y \tm c_x) \tm\vec{k} \end{align} \]

因此,

\[ \begin{align} &\vec{a} \times \big(\tm \vec{b} \times \vec{c} \tm\big) = \left|\, \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_y \tm c_z - b_z \tm c_y & b_z \tm c_x - b_x \tm c_z & b_x \tm c_y - b_y \tm c_x \end{matrix} \mkern{-15mu}\right| \\ & = \left[ a_y \rb{ b_x \tm c_y - b_y \tm c_x } - a_z \rb{ b_z \tm c_x - b_x \tm c_z } \right] \tm\vec{i} \\ &+ \left[ a_z \rb{ b_y \tm c_z - b_z \tm c_y } - a_x \rb{ b_x \tm c_y - b_y \tm c_x } \right] \tm\vec{j} \\ &+ \left[ a_x \rb{ b_z \tm c_x - b_x \tm c_z } - a_y \rb{ b_y \tm c_z - b_z \tm c_y } \right] \tm \vec{k} \end{align} \]

\[ \begin{align} &\vec{a} \times \big(\tm \vec{b} \times \vec{c} \tm\big) \\ &= \left|\, \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_y \tm c_z - b_z \tm c_y & b_z \tm c_x - b_x \tm c_z & b_x \tm c_y - b_y \tm c_x \end{matrix} \mkern{-15mu}\right| \\ & = \left[ a_y \rb{ b_x \tm c_y - b_y \tm c_x } - a_z \rb{ b_z \tm c_x - b_x \tm c_z } \right] \tm\vec{i} \\ &+ \left[ a_z \rb{ b_y \tm c_z - b_z \tm c_y } - a_x \rb{ b_x \tm c_y - b_y \tm c_x } \right] \tm\vec{j} \\ &+ \left[ a_x \rb{ b_z \tm c_x - b_x \tm c_z } - a_y \rb{ b_y \tm c_z - b_z \tm c_y } \right] \tm \vec{k} \end{align} \]

上式中包含 \(\vec{i}\) 的项的系数可写为

\[ \begin{align} &b_x \rb{ a_y \tm c_y + a_z \tm c_z } - c_x \rb{ a_y \tm b_y + a_z \tm b_z } \\ &= b_x \rb{ \vec{a} \cdot \vec{c} - a_x \tm c_x } - c_x \rb{ \vec{a} \cdot \vec{b} - a_x \tm b_x } \\ &= \rb{ \vec{a} \cdot \vec{c} \tm} \tm b_1 - \rb{ \vec{a} \cdot \vec{b} \tm} \tm c_1 \end{align} \]

同理,包含 \(\vec{j}\)\(\vec{k}\) 的项的系数分别可以写为

\[ \begin{gather} \rb{\vec{a} \cdot \vec{c} \tm} \tm b_2 - \rb{\vec{a} \cdot \vec{b} \tm} \tm c_2 \\ \rb{\vec{a} \cdot \vec{c} \tm} \tm b_3 - \rb{\vec{a} \cdot \vec{b} \tm} \tm c_3 \end{gather} \]

这样就可以得到式 \(\eqref{eq:tvp}\) 的结果