跳转至

第八章课后习题

8-6

铁芯上线圈有 \(100\) 匝,铁芯中磁通量随时间变化规律为 \(\Phi = 8.0 \times 10^{-5} \sin \rb{100\pi t}\)(单位:\(\mr{Wb}\)\(t\) 的单位:\(\mr{s}\))。求在 \(t = 1.0 \times 10^{-2} \,\mr{s}\) 时刻,线圈中的感应电动势。

参考解答

线圈中磁链 \(\Psi = N \Phi\),感应电动势

\[ \mathcal{E}_\mr{i} = - \frac{\d{\Psi}}{\d{t}} = -N \frac{\d{\Phi}}{\d{t}} = \frac{4\pi}{5} \cos \rb{100 \pi t} \]

\(t = 1.0 \times 10^{-2} \,\mr{s}\)

\[ \mathcal{E}_\mr{i} = \frac{4\pi}{5} \cos \rb{\pi} \approx -2.51 \,\mr{\rb{V}} \]

8-7

两根相距为 \(d\) 的无限长平行直导线,通以大小相等、流向相反的电流,且电流均以 \(\dfrac{\d{I}}{\d{t}}\) 的变化率增长。有一个边长为 \(d\) 的正方形线圈与两导线处于同一平面,如图所示。求线圈中的感应电动势。

Image title
8-7

参考解答

如图所示,建立直角坐标系 \(O \,\text{-}\, xyz\),则左右两条直导线在 \(x>0\) 的区域激发的磁感应强度分别为

\[ \vec{B}_1 = - \frac{\mu_0 I}{2 \pi \rb{x+d \tm}} \,\vec{k}, \ \vec{B}_2 = \frac{\mu_0 I}{2 \pi x} \,\vec{k} \]

因此,在正方形线圈内横坐标为 \(x\) 处,取一个宽度为 \(\d{x}\) 高为 \(d\) 的有向面积微元 \(\d{\vec{s}}\)\(\rb{\d{\vec{s}} = d \,\d{x} \,\vec{k}\tm}\),则该面积微元的磁通量

\[ \d{\Phi_\mr{b}} = \rb{\vec{B}_1 + \vec{B}_2} \cdot \d{\vec{s}} = \sb{ \frac{\mu_0 I}{2\pi} \rb{{1 \over x} - {1 \over x+d}} }d \,\d{x} \]
\[ \begin{align} & \d{\Phi_\mr{b}} = \rb{\vec{B}_1 + \vec{B}_2} \cdot \d{\vec{s}} \\ & = \sb{ \frac{\mu_0 I}{2\pi} \rb{{1 \over x} - {1 \over x+d}} }d \,\d{x} \end{align} \]

则正方形线圈的总磁通量

\[ \Phi_\mr{b} = \int \d{\Phi_\mr{b}} = \int_d^{2d} \sb{ \frac{\mu_0 I}{2\pi} \rb{{1 \over x} - {1 \over x+d}} }d \,\d{x} = \frac{\mu_0 I d}{2 \pi} \ln \rb{4 \over 3} \]
\[ \begin{align} & \Phi_\mr{b} = \int \d{\Phi_\mr{b}} \\ & = \int_d^{2d} \sb{ \frac{\mu_0 I d}{2\pi} \rb{{1 \over x} - {1 \over x+d}} } \,\d{x} \\ & = \frac{\mu_0 I d}{2 \pi} \ln \rb{4 \over 3} \end{align} \]

正方形线圈的感应电动势

\[ \mathcal{E}_\mr{i} = - \frac{\d{\Phi_\mr{b}}}{\d{t}} = \frac{\mu_0 d}{2 \pi} \ln \rb{3 \over 4} \frac{\d{I}}{\d{t}} \]

8-12

长度为 \(L\) 的铜棒,以距端点 \(r\) 处为支点,并以角速率 \(\omega\) 绕通过支点且垂直于铜棒的轴转动。设磁感强度为 \(B\) 的均匀磁场与轴平行,求棒两端的电势差

Image title
8-12

参考解答

如图所示,建立随铜棒转动的坐标系 \(O \tm\text{-}\tm xyz\),在铜棒上 \(\vec{x}\) 处取一个长度为 \(\d{x}\) 的微元,则该微元运动的速度

\[ \vec{v} = \vec{\omega} \times \vec{x} = \omega \,\vec{k} \times \big( x \,\vec{i} \tm \big) = \omega \tm x \,\vec{j} \]

该微元的动生电动势

\[ \d{\mathcal{E}_\mr{i}} = \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} = \sb{ \rb{\omega \tm x \,\vec{j}\tm} \times \rb{-B \,\vec{k}} } \cdot \rb{\d{x} \vec{i} \tm} = - \omega B x \,\d{x} \]
\[ \begin{align} & \d{\mathcal{E}_\mr{i}} = \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} \\ & = \sb{ \rb{\omega \tm x \,\vec{j}\tm} \times \rb{-B \,\vec{k}} } \cdot \rb{\d{x} \vec{i} \tm} \\ & = - \omega B x \,\d{x} \end{align} \]

该棒总的动生电动势

\[ \mathcal{E}_{AB} = \int_{AB} \d{\mathcal{E}_\mr{i}} = \int_{-r}^{L-r} -\omega B x \,\d{x} = \left. - \frac{1}{2} \omega B x^2 \right|_{-r}^{L-r} = -\frac{1}{2} \omega B L \rb{L - 2r} \]
\[ \begin{align} & \mathcal{E}_{AB} = \int_{AB} \d{\mathcal{E}_\mr{i}} = \int_{-r}^{L-r} -\omega B x \,\d{x} \\ & = \left. - \frac{1}{2} \omega B x^2 \right|_{-r}^{L-r} = -\frac{1}{2} \omega B L \rb{L - 2r} \end{align} \]

这里,我们假设电动势的方向是从 \(A\)\(B\),如果 \(\mathcal{E}_{AB} > 0\),则真实电动势的方向与我们假设的方向一致;反之,如果 \(\mathcal{E}_{AB} < 0\),则真实电动势的方向与我们假设的方向相反

电势差

\[ U_{AB} = -\mathcal{E}_{AB} = \frac{1}{2} \omega B L(L - 2r) \]

8-14

如图所示,金属杆 \(AB\) 以匀速 \(v = 2.0 \,\mr{m \cdot s^{-1}}\) 平行于一根长导线移动,此导线通有电流 \(I = 40 \, \text{A}\)。问此杆中的感应电动势为多大?杆的哪一端电势较高?

Image title
8-14

参考解答

如图所示,建立三维直角坐标系 \(O \tm \text{-}\tm xyz\),在 \(xOy\) 平面上 \(x>0\) 的区域中,磁感应强度

\[ \vec{B} = -\frac{\mu_0 I}{2 \pi x} \,\vec{k} \]

在金属杆 \(AB\) 上取一个长度为 \(\d{x}\) 的微元,则该微元运动的速度 \(\vec{v} = v \,\vec{j}\),动生电动势

\[ \d{\mathcal{E}_\mr{i}} = \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} = \sb{ \rb{v \,\vec{j}\tm} \times \rb{-\frac{\mu_0 I}{2 \pi x} \,\vec{k}} } \cdot \rb{\d{x} \,\vec{i}\tm} = -\frac{\mu_0 v I}{2 \pi x} \,\d{x} \]
\[ \begin{align} & \d{\mathcal{E}_\mr{i}} = \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} \\ & = \sb{ \rb{v \,\vec{j}\tm} \times \rb{-\frac{\mu_0 I}{2 \pi x} \,\vec{k}} } \cdot \rb{\d{x} \,\vec{i}\tm} \\ & = -\frac{\mu_0 v I}{2 \pi x} \,\d{x} \end{align} \]

金属杆 \(AB\) 上的感应电动势

\[ \mathcal{E}_{AB} = \int_{AB} \d{\mathcal{E}_\mr{i}} = \int_{0.1}^{1.1} -\frac{\mu_0 v I}{2 \pi x} \,\d{x} = \left. -\frac{\mu_0 v I}{2 \pi} \ln x \right|_{0.1}^{1.1} \approx -3.84 \times 10^{-5} \, \mr{\rb{V}} \]
\[ \begin{align} & \mathcal{E}_{AB} = \int_{AB} \d{\mathcal{E}_\mr{i}} = \int_{0.1}^{1.1} -\frac{\mu_0 v I}{2 \pi x} \,\d{x} \\ & = \left. -\frac{\mu_0 v I}{2 \pi} \ln x \right|_{0.1}^{1.1} \approx -3.84 \times 10^{-5} \, \mr{\rb{V}} \end{align} \]

上式中,\(\mathcal{E}_{AB}<0\) 表示电动势方向由 \(B\) 指向 \(A\),因此,\(A\) 点的电势较高


8-15

如图所示,在一根无限长载流直导线的附近放置一个矩形导体线框。该线框在垂直于导线方向上以匀速率 \(v\) 向右移动。求在图示位置处线框中的感应电动势的大小和方向

Image title
8-15

参考解答

如图所示,建立直角坐标系 \(O \tm \text{-}\tm xyz\),在 \(xOy\) 平面上 \(x>0\) 的区域中,磁感应强度

\[ \vec{B} = -\frac{\mu_0 I}{2 \pi x} \,\vec{k} \]

解法1

导线框的速度 \(\vec{v} = v \,\vec{i}\)。在矩形导线框的动生电动势

  • \(ef\)

    \[ \begin{align} \mathcal{E}_{ef} & = \int_{ef} \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} = \int_0^{l_2} \sb{ \rb{v \,\vec{i}\tm} \times \rb{-\frac{\mu_0 I}{2 \pi d} \,\vec{k}} } \cdot \rb{\d{y} \,\vec{j}\tm} \\ & = \int_0^{l_2} \frac{\mu_0 v I}{2 \pi d} \,\d{y} = \frac{\mu_0 v I l_2}{2 \pi d} \end{align} \]

    \[ \begin{align} &\mathcal{E}_{ef} = \int_{ef} \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} \\ & = \int_0^{l_2} \sb{ \rb{v \,\vec{i}\tm} \times \rb{-\frac{\mu_0 I}{2 \pi d} \,\vec{k}} } \cdot \rb{\d{y} \,\vec{j}\tm} \\ & = \int_0^{l_2} \frac{\mu_0 v I}{2 \pi d} \,\d{y} = \frac{\mu_0 v I l_2}{2 \pi d} \end{align} \]
  • \(gh\)

    \[ \begin{align} \mathcal{E}_{gh} & = \int_{gh} \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} = \int_{l_2}^0 \sb{ \rb{v \,\vec{i}\tm} \times \frac{-\mu_0 I}{2 \pi \rb{d+l_1}} \,\vec{k} } \cdot \rb{\d{y} \,\vec{j}\tm} \\ & = \int_{l_2}^0 \frac{\mu_0 v I}{2 \pi \rb{d+l_1}} \,\d{y} = - \frac{\mu_0 v I l_2}{2 \pi \rb{d+l_1}} \end{align} \]

    \[ \begin{align} & \mathcal{E}_{gh} = \int_{gh} \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} \\ & = \int_{l_2}^0 \sb{ \rb{v \,\vec{i}\tm} \times \frac{-\mu_0 I}{2 \pi \rb{d+l_1}} \,\vec{k} } \cdot \rb{\d{y} \,\vec{j}\tm} \\ & = \int_{l_2}^0 \frac{\mu_0 v I}{2 \pi \rb{d+l_1}} \,\d{y} = - \frac{\mu_0 v I l_2}{2 \pi \rb{d+l_1}} \end{align} \]
  • \(fg\)\(he\)

    \[ \mathcal{E}_{fg\,\text{或}\,he} = \int_{fg\,\text{或}\,he} \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} = \int_{fg\,\text{或}\,he} \sb{ \rb{v \,\vec{i}\tm} \times \frac{-\mu_0 I}{2 \pi x} \,\vec{k} } \cdot \rb{\d{x} \,\vec{i}\tm} = 0 \]

    \[ \begin{align} & \mathcal{E}_{fg\,\text{或}\,he} = \int_{fg\,\text{或}\,he} \rb{\vec{v} \times \vec{B}} \cdot \d{\vec{l}} \\ & = \int_{fg\,\text{或}\,he} \sb{ \rb{v \,\vec{i}\tm} \times \frac{-\mu_0 I}{2 \pi x} \,\vec{k} } \cdot \rb{\d{x} \,\vec{i}\tm} \\ & = 0 \end{align} \]

因此,导体线框中的总的感应电动势

\[ \mathcal{E}_\mr{i} = \mathcal{E}_{ef} + \mathcal{E}_{fg} + \mathcal{E}_{gh} + \mathcal{E}_{he} = \frac{\mu_0 v I l_2}{2 \pi d} - \frac{\mu_0 v I l_2}{2\pi \rb{d+l_1}} = \frac{\mu_0 v I l_1 l_2}{2\pi d \rb{d + l_1}} \]
\[ \begin{align} &\mathcal{E}_\mr{i} = \mathcal{E}_{ef} + \mathcal{E}_{fg} + \mathcal{E}_{gh} + \mathcal{E}_{he} \\ & = \frac{\mu_0 v I l_2}{2 \pi d} - \frac{\mu_0 v I l_2}{2\pi \rb{d+l_1}} = \frac{\mu_0 v I l_1 l_2}{2\pi d \rb{d + l_1}} \end{align} \]

上式中,\(\mathcal{E}>0\),表示电动势方向为 \(e \to f \to g \to h\),即沿顺时针

解法2

导体框中的磁通量(取 \(-\vec{k}\) 为导体框平面的正方向,其有向面积微元 \(\d{\vec{s}} = -l_2 \,\d{x} \,\vec{k}\tm\)

\[ \begin{align} \Phi_\mr{b} & = \int_S \vec{B} \cdot \d{\vec{s}} = \int_d^{d+l_1} - \frac{\mu_0 I}{2\pi x} \,\vec{k} \cdot \rb{- l_2 \,\d{x} \,\vec{k} \tm} = \int_d^{d+l_1} \frac{\mu_0 I l_2}{2 \pi x} \,\d{x} \\ & = \left. \frac{\mu_0 I l_2}{2 \pi} \ln x \right|_d^{d+l_1} = \frac{\mu_0 I l_2}{2 \pi} \ln \rb{1 + \frac{l_1}{d}} \end{align} \]
\[ \begin{align} \Phi_\mr{b} &= \int_S \vec{B} \cdot \d{\vec{s}} \\ &= \int_d^{d+l_1} - \frac{\mu_0 I}{2\pi x} \,\vec{k} \cdot \rb{- l_2 \,\d{x} \,\vec{k} \tm} \\ & = \int_d^{d+l_1} \frac{\mu_0 I l_2}{2 \pi x} \,\d{x} = \left. \frac{\mu_0 I l_2}{2 \pi} \ln x \right|_d^{d+l_1} \\ & = \frac{\mu_0 I l_2}{2 \pi} \ln \rb{1 + \frac{l_1}{d}} \end{align} \]

导体框中的电动势

\[ \mathcal{E}_\mr{i} = - \frac{\d{\Phi_\mr{b}}}{\d{t}} = \frac{\mu_0 I l_1 l_2}{2\pi d \rb{d + l_1}} \frac{\d{d}}{\d{t}} = \frac{\mu_0 v I l_1 l_2}{2\pi d \rb{d + l_1}} \]
\[ \begin{align} \mathcal{E}_\mr{i} & = - \frac{\d{\Phi_\mr{b}}}{\d{t}} = \frac{\mu_0 I l_1 l_2}{2\pi d \rb{d + l_1}} \frac{\d{d}}{\d{t}} \\ & = \frac{\mu_0 v I l_1 l_2}{2\pi d \rb{d + l_1}} \end{align} \]

\(\displaystyle \frac{\d{d}}{\d{t}}\) 表示距离 \(d\) 随时间的变化率,也就是导体框沿 \(x\) 轴的移动速度 \(v\)

由于取 \(-\vec{k}\) 为导体框平面的正方向,因此,导体框中的正方向为 \(e \to f \to g \to h\),即沿顺时针。上式中,\(\mathcal{E}_\mr{i}>0\),表面该方向也是电动势的方向


8-20

截面积为长方形的环形均匀密绕螺绕环,其尺寸如图所示,共有 \(N\) 匝。求该螺绕环的自感 \(L\)

Image title
8-20

参考解答

如图所示,在螺线管的内部,对称轴的横截面上,作半径为 \(r\) 的圆形安培环路 \(\Gamma\),其圆心在对称轴上,取 \(\Gamma\) 的正方向与螺绕环中电流方向呈右手螺旋关系,根据安培环路定理

\[ \oint_\Gamma \vec{B} \cdot \d{\vec{l}} = \mu_0 \sum_i I_i^\mr{in} \tag{1} \label{eq:8-20-1} \]

依题意可知,\(\Gamma\) 上各处的磁感应强度方向沿其切向 \(\vec{e}_\mr{t}\),且大小处处相等,设通过线圈的电流为 \(I\),在螺线管的内部(\(R_1 < r < R_2\)

\[ \oint_\Gamma \vec{B} \cdot \d{\vec{l}} = \oint_\Gamma B \,\d{l} = B \oint_\Gamma \d{l} = 2\pi r B ,\quad \sum_i I_i^\mr{in} = N I \]
\[ \begin{gather} \oint_\Gamma \vec{B} \cdot \d{\vec{l}} = \oint_\Gamma B \,\d{l} = B \oint_\Gamma \d{l} = 2\pi r B \\ \sum_i I_i^\mr{in} = N I \end{gather} \]

代入式 \(\eqref{eq:8-20-1}\),得

\[ \vec{B} = \frac{\mu_0 N I}{2\pi r} \vec{e}_\mr{t} \]

如图所示,螺线管轴截面上的有向面积微元 \(\d{\vec{s}} = h \,\d{r} \,\vec{e}_\mr{t}\),则螺线管中的磁链

\[ \Psi = N \int_S \vec{B} \cdot \d{\vec{s}} = N \int_{R_1}^{R_2} \frac{\mu_0 N I}{2\pi r} h \,\d{r} = \frac{\mu_0 N^2 I h}{2\pi} \ln \rb{\frac{R_2}{R_1}} \]
\[ \begin{align} \Psi & = N \int_S \vec{B} \cdot \d{\vec{s}} = N \int_{R_1}^{R_2} \frac{\mu_0 N I}{2\pi r} h \,\d{r} \\ & = \frac{\mu_0 N^2 I h}{2\pi} \ln \rb{\frac{R_2}{R_1}} \end{align} \]

该螺绕环的自感系数

\[ L = \frac{\Psi_\mr{b}}{I} = \frac{\mu_0 N^2 h}{2\pi} \ln \rb{\frac{R_2}{R_1}} \]