第五章课后习题
5-10¶
若电荷 \(Q\) 均匀地分布在长为 \(L\) 的细棒上,求证:
- 在棒的延长线上,且离棒中心为 \(r\) 处的电场强度为 \(E=\dfrac{1}{\pi\varepsilon_0}\dfrac{Q}{4 r^2 - L^2}\)
- 在棒的垂直平分线上,且离棒为 \(r\) 处的电场强度为 \(E=\dfrac{1}{2\pi\varepsilon_0 r}\dfrac{Q}{\sqrt{4 r^2 + L^2}}\)
若棒为无限长(即 \(L\rightarrow\infty\)),试将结果与无限长均匀带电直导线的电场强度比较。
参考解答¶

如上图所示,将细棒置于 \(x\) 轴上,细棒的中点位于原点 \(O\),在细棒上 \(x\) 处取长度为 \(\d{x}\) 的微元,该微元的电荷量
-
当点 \(P\) 在棒的延长线上时,其相对于微元的位矢 \(\displaystyle \vec{\rho} = \rb{r-x} \,\vec{i}\),细棒上的微元在点 \(P\) 处激发的电场强度
\[ \d{\vec{E}} = \frac{1}{4\pi \varepsilon_0} \frac{\vec{\rho}\,\d{q}}{\rho^3} = \frac{Q}{4\pi \varepsilon_0} \frac{\d{x}}{L \rb{r-x}^2} \,\vec{i} \]细棒在点 \(P\) 处激发的电场强度
\[ \vec{E} = \int \d{\vec{E}} = \int_{-L/2}^{L/2} \frac{Q}{4\pi\varepsilon_0} \frac{\d{x}}{L \rb{r-x}^2} \,\vec{i} = \frac{Q}{4\pi\varepsilon_0 \rb{r^2 - L^2/4}} \,\vec{i} \]\[ \begin{align} \vec{E} & = \int \d{\vec{E}} = \int_{-L/2}^{L/2} \frac{Q}{4\pi\varepsilon_0} \frac{\d{x}}{L \rb{r-x}^2} \,\vec{i} \\ & = \frac{Q}{4\pi\varepsilon_0 \rb{r^2 - L^2/4}} \,\vec{i} \end{align} \] -
当点 \(P\) 在棒的中垂线上时,其相对于微元的位矢 \(\displaystyle \vec{\rho} = -x \,\vec{i} + r \,\vec{j}\),细棒上的微元在点 \(P\) 处激发的电场强度
\[ \d{\vec{E}} = \frac{1}{4\pi \varepsilon_0} \frac{\vec{\rho}\,\d{q}}{\rho^3} = \frac{Q}{4\pi\varepsilon_0} \frac{\rb{-x \,\vec{i} + r \,\vec{j}\tm} \,\d{x}}{L \rb{x^2 + r^2}^{3/2}} \]细棒在点 \(P\) 处激发的电场强度
\[ \vec{E} = \int \d{\vec{E}} = \int_{-L/2}^{L/2} \frac{Q}{4\pi\varepsilon_0} \frac{\rb{-x \,\vec{i} + r \,\vec{j}\tm} \,\d{x}}{L \rb{x^2 + r^2}^{3/2}} = \frac{Q}{2\pi\varepsilon_0 r \sqrt{4r^2 + L^2}}\,\vec{j} \tag{1} \label{eq:5-10-1} \]\[ \begin{align} & \vec{E} = \int \d{\vec{E}} \\ & = \int_{-L/2}^{L/2} \frac{Q}{4\pi\varepsilon_0} \frac{\rb{-x \,\vec{i} + r \,\vec{j}\tm} \,\d{x}}{L \rb{x^2 + r^2}^{3/2}} \\ & = \frac{Q}{2\pi\varepsilon_0 r \sqrt{4r^2 + L^2}}\,\vec{j} \end{align} \tag{1} \label{eq:5-10-1-small} \]
式 \(\eqref{eq:5-10-1}\)\(\eqref{eq:5-10-1-small}\) 计算过程
根据矢量积分在直角坐标系的计算规则,式 \(\eqref{eq:5-10-1}\) 中,沿 \(x\) 分量的积分为
沿 \(y\) 分量的积分为
若棒单位长度所带电荷 \(\lambda\) 为常量,当棒长 \(L \rightarrow \infty\) 时,点 \(P\) 的电场强度为
此结果与无限长带电直线周围的电场强度分布相同
5-15¶
设匀强电场的电场强度 \(\vec{E}\) 与半径为 \(R\) 的半球面的对称轴平行,试计算通过此半球面的电场强度通量
参考解答¶

解法1
如图所示,以球心为原点 \(O\),底面在 \(xOy\) 平面上,建立直角坐标系。通过半球面 \(S_1\) 的电场强度 \(\vec{E} = E \,\vec{k}\),在半球面上取一个有向面元 \(\d{\vec{s}}\),其表达式为
式 \(\eqref{eq:5-15-1}\)\(\eqref{eq:5-15-1-small}\) 的推导过程
如图所示,在球面上,随天顶角变化 \(\d{\theta}\) 划过的轨迹长 \(R \,\d{\theta}\),随方位角变化 \(\d{\varphi}\) 划过的轨迹长 \(R \sin\theta \,\d{\varphi}\)。这两条轨迹相互垂直,面元的面积 \(\d{s} = R^2 \sin\theta \,\d{\theta} \,\d{\varphi}\)
这个面元的位矢 \(\displaystyle \vec{r} = R \sin\theta \cos\varphi \,\vec{i} + R \sin\theta \sin\varphi \,\vec{j} + R \cos\theta \,\vec{k}\),其法向单位矢量 \(\vec{n}\) 就是沿 \(\vec{r}\) 方向的单位矢量,因此
综上,球面上的有向面积微元
因此,电场强度对半球面的通量
解法2
如图所示,给半球面 \(S_1\) 补充一个底面 \(S_2\),构成一个闭合的半球面 \(S\)
当 \(S\) 中无电荷时,根据静电场的高斯定理,电场强度 \(\vec{E}\) 对其的通量
因此,\(\vec{E}\) 对 \(S_1\) 的通量
5-22¶
一个内外半径分别为 \(R_1\) 和 \(R_2\) 的均匀带电球壳,其电荷为 \(Q_1\),球壳外同心罩一个半径为 \(R_3\) 的均匀带电球面,其电荷为 \(Q_2\)
- 求电场分布
- 电场强度是否为与球心距离 \(r\) 的连续函数?试分析

参考解答¶
以球心 \(O\) 作为原点,目标点 \(P\) 的位矢为 \(\vec{r}\)。如图所示,作一个以 \(O\) 为球心,通过点 \(P\) 的球形高斯面 \(S\),其半径为 \(r\)
依题意可知,电场强度呈球对称分布,在 \(S\) 上大小恒定,且与 \(S\) 处处垂直。根据静电场的高斯定理
其中
- 当 \(r < R_1\) 时,\(S\) 包含的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = 0\),根据高斯定理 \(\displaystyle 4\pi r^2 E = 0\),故 \(\vec{E} = \vec{0}\)
-
当 \(R_1 \leq r < R_2\) 时,\(S\) 包含的电荷量
\[ \sum_i q_i^\mr{in} = \frac{Q_1 \rb{4/3} \pi \rb{r^3 - R_1^3}}{\rb{4/3} \pi \rb{R_2^3 - R_1^3}} = \frac{Q_1 \rb{r^3 - R_1^3}}{R_2^3 - R_1^3} \]\[ \begin{align} \sum_i q_i^\mr{in} & = \frac{Q_1 \rb{4/3} \pi \rb{r^3 - R_1^3}}{\rb{4/3} \pi \rb{R_2^3 - R_1^3}} \\ & = \frac{Q_1 \rb{r^3 - R_1^3}}{R_2^3 - R_1^3} \end{align} \]根据高斯定理
\[ 4\pi r^2 E = \frac{Q_1 \rb{r^3 - R_1^3}}{\varepsilon_0 \rb{R_2^3 - R_1^3}} \]因此
\[ \vec{E} = \frac{Q_1 \rb{r^3 - R_1^3}}{4\pi \varepsilon_0 r^2 \rb{R_2^3 - R_1^3}} \,\vec{e}_r \]其中,\(\vec{e}_r = \vec{r} / \abs{\vec{r}\tm}\) 是沿 \(\vec{r}\) 的单位矢量
-
当 \(R_2 < r < R_3\) 时,\(S\) 包含的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = Q_1\),根据高斯定理 \(\displaystyle 4\pi r^2 E = \frac{Q_1}{\varepsilon_0}\),故 \(\displaystyle \vec{E} = \frac{Q_1}{4\pi \varepsilon_0 r^2} \,\vec{e}_r\)
-
当 \(r>R_3\) 时,\(S\) 包含的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = Q_1 + Q_2\),根据高斯定理 \(\displaystyle 4\pi r^2 E = \frac{Q_1 + Q_2}{\varepsilon_0}\),故 \(\displaystyle \vec{E} = \frac{Q_1 + Q_2}{4\pi \varepsilon_0 r^2} \,\vec{e}_r\)
从上面的结果可以看出,磁场强度的大小在外层带电球面 \(\rb{r=R_3}\) 的两边存在不连续的跃变,其变化量
5-23¶
半径为 \(R\) 的无限长直圆柱体内均匀分布着电荷,电荷体密度为 \(\rho\)。试求离轴线为 \(r\) 处的电场强度 \(E\),并画出 \(E \, \text{-} \, r\) 曲线。
参考解答¶

如图所示,作一个底面半径为 \(r\),高为 \(h\) 的同轴圆柱面 \(S\) 作为高斯面
依题意可知,该带电圆柱体激发的电场强度 \(\vec{E}\) 在 \(S\) 的侧面上大小恒定,且与 侧面处处垂直。根据高斯定理
其中,\(\displaystyle \oint_S \vec{E} \cdot \d{\vec{s}} = 2\pi r h E\)
-
当 \(r < R\) 时,\(S\) 包围的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = \rho \pi r^2 h\)。代入式 \(\eqref{eq:5-23-1}\),得
\[ 2\pi r h E = \varepsilon_0^{-1} \rho \pi r^2 h \]因此,\(\displaystyle \vec{E} = \frac{\rho \tm r}{2 \varepsilon_0} \vec{e}_r\),其中,\(\vec{e}_r\) 为横截面上沿半径方向的单位矢量
-
当 \(r \geq R\) 时,\(S\) 包围的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = \rho \pi R^2 h\)。代入式 \(\eqref{eq:5-23-1}\),得
\[ 2\pi r h E = \varepsilon_0^{-1} \rho \pi R^2 h \]因此,\(\displaystyle \vec{E} = \frac{\rho R^2}{2 \varepsilon_0 r} \vec{e}_r\),其中,\(\vec{e}_r\) 为横截面上沿半径方向的单位矢量

5-24¶
两个带有等量异号电荷的无限长同轴圆柱面,半径分别为 \(R_1\) 和 \(R_2\) (\(R_2 > R_1\)),单位长度所带的电荷为 \(\lambda\) 。求离轴线为 \(r\) 处的电场强度:(1) \(r<R_1\);(2) \(R_1 < r < R_2\);(3) \(r > R_2\)

参考解答¶
依题意可知,盖带电圆筒激发的电场强度 \(\vec{E}\) 在横截面上,且沿半径方向。如图所示,作一个底面半径为 \(r\),高为 \(h\) 的同轴圆柱面 \(S\) 作为高斯面,根据高斯定理
其中,\(\displaystyle \oint_S \vec{E} \cdot \d{\vec{s}} = 2\pi r h E\)
-
当 \(r < R_1\) 时,\(S\) 包围的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = 0\)
根据式 \(\eqref{eq:5-24-1}\),\(2\pi r h E = 0\),故 \(\displaystyle \vec{E} = \vec{0}\)
-
当 \(R_1 < r < R_2\) 时,\(S\) 包围的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = \lambda h\)
根据式 \(\eqref{eq:5-24-1}\),\(\displaystyle 2\pi r h E = \varepsilon_0^{-1} \lambda h\),因此
\[ \vec{E} = \frac{\lambda}{2\pi \varepsilon_0 r} \vec{e}_r \]其中,\(\vec{e}_r\) 为横截面上沿半径方向的单位矢量
-
当 \(r > R_2\) 时,\(S\) 包围的电荷量
\[ \sum_i q_i^\mr{in} = \lambda h - \lambda h = 0 \]根据式 \(\eqref{eq:5-24-1}\),\(2\pi r h E = 0\),故 \(\displaystyle \vec{E} = \vec{0}\)
5-25¶
如图所示,三个点电荷 \(Q_1\)、\(Q_2\)、\(Q_3\) 沿一条直线等间距分布,且 \(Q_1 = Q_3 = Q\)。已知其中任一点电荷所受合力均为零,求在固定 \(Q_1\)、\(Q_3\) 的情况下,将 \(Q_2\) 从点 \(O\) 移到无穷远处外力所做的功

参考解答¶
如图所示建立坐标系,依题意,\(Q_1\) 所受的合力为零,即
解得:\(\displaystyle Q_2 = - \frac{Q}{4}\)
解法1
根据电场的叠加原理,在 \(Q_1\) 和 \(Q_3\) 的中垂线上,电荷 \(Q_1\)、\(Q_3\) 在 \(y\) 轴上任意一点激发的电场强度
将 \(Q_2\) 从点 \(O\) 沿 \(y\) 轴移到无穷远处,外力所做的功
解法2
根据电势的叠加原理,得 \(Q_1\)、\(Q_3\) 在点 \(O\) 电势
无穷远点的电势 \(V_\infty = 0\),将 \(Q_2\) 从点 \(O\) 推到无穷远处的过程中,电场力做功
外力做功 \(\displaystyle W = -W' = \frac{Q^2}{8 \pi \varepsilon_0 d}\)
5-31¶
两个同心球面的半径分别为 \(R_1\) 和 \(R_2\),各自带有电荷 \(Q_1\) 和 \(Q_2\)。求:
- 各区域电势的分布,并画出分布曲线
- 两球面上的电势差

参考解答¶
-
设空间中任意一点 \(P\) 的位矢为 \(\vec{r}\)。如图所示,作一个通过点 \(P\),与带电球面同心的球形高斯面 \(S\),该高斯面的半径 \(r = \abs{\vec{r}\tm}\)。根据电荷分布的对称性可知,在 \(S\) 上电场强度大小相等,且与 \(S\) 处处垂直。根据静电场的高斯定理
\[ \oint_S \vec{E} \cdot \d{\vec{s}} = \varepsilon_0^{-1} \sum_i q_i^\mr{in} \]其中
\[ \oint_S \vec{E} \cdot \d{\vec{s}} = \oint_S E \,\d{s} = E \oint_S \d{s} = 4\pi r^2 E \]
-
当 \(r \geq R_2\) 时,\(S\) 包围的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = Q_1 + Q_2\),根据高斯定理 \(\displaystyle 4\pi r^2 E = Q_1 + Q_2\),故 \(\displaystyle \vec{E} = \frac{Q_1 + Q_2}{4\pi \varepsilon_0 r^2} \,\vec{e}_r\)。此时,点 \(P\) 处的电势
\[ V(r) = \int_P^\infty \vec{E} \cdot \d{\vec{r}} = \frac{Q_1 + Q_2}{4\pi \varepsilon_0} \int_r^\infty \frac{\d{r}}{r^2} = \frac{Q_1 + Q_2}{4\pi \varepsilon_0 r} \]\[ \begin{align} V(r) & = \int_P^\infty \vec{E} \cdot \d{\vec{r}} = \frac{Q_1 + Q_2}{4\pi \varepsilon_0} \int_r^\infty \frac{\d{r}}{r^2} \\ & = \frac{Q_1 + Q_2}{4\pi \varepsilon_0 r} \end{align} \] -
当 \(R_1 \leq r < R_2\) 时,\(S\) 包围的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = Q_1\),根据高斯定理 \(\displaystyle 4\pi r^2 E = Q_1\),故 \(\displaystyle \vec{E} = \frac{Q_1}{4\pi \varepsilon_0 r^2} \,\vec{e}_r\)。此时,点 \(P\) 处的电势
\[ \begin{align} & V(r) = \int_P^\infty \vec{E} \cdot \d{\vec{r}} = \int_P^{R_2} \vec{E} \cdot \d{\vec{r}} + V(R_2) \\ & = \int_r^{R_2} \frac{Q_1}{4\pi \varepsilon_0} \frac{\d{r}}{r^2} + \frac{Q_1 + Q_2}{4\pi \varepsilon_0 R_2} = \frac{Q_1}{4\pi \varepsilon_0} \rb{\frac{1}{r} - \frac{1}{R_2}} + \frac{Q_1 + Q_2}{4\pi \varepsilon_0 R_2} \end{align} \]\[ \begin{align} & V(r) = \int_P^\infty \vec{E} \cdot \d{\vec{r}} = \int_P^{R_2} \vec{E} \cdot \d{\vec{r}} + V(R_2) \\ & = \int_r^{R_2} \frac{Q_1}{4\pi \varepsilon_0} \frac{\d{r}}{r^2} + \frac{Q_1 + Q_2}{4\pi \varepsilon_0 R_2} \\ & = \frac{Q_1}{4\pi \varepsilon_0} \rb{\frac{1}{r} - \frac{1}{R_2}} + \frac{Q_1 + Q_2}{4\pi \varepsilon_0 R_2} \end{align} \] -
当 \(r<R_1\) 时,\(S\) 包围的电荷量 \(\displaystyle \sum_i q_i^\mr{in} = 0\),根据高斯定理 \(\displaystyle 4\pi r^2 E = 0\),故 \(\displaystyle \vec{E} = \vec{0}\)。此时,点 \(P\) 处的电势
\[ \begin{align} V(r) & = \int_P^\infty \vec{E} \cdot \d{\vec{r}} = \int_r^{R_1} \vec{E} \cdot \d{\vec{r}} + V(R_1) \\ & = V(R_1) = \frac{1}{4\pi \varepsilon_0} \rb{\frac{Q_1}{R_1} + \frac{Q_2}{R_2}} \end{align} \]\[ \begin{align} V(r) & = \int_P^\infty \vec{E} \cdot \d{\vec{r}} = \int_r^{R_1} \vec{E} \cdot \d{\vec{r}} + V(R_1) \\ & = V(R_1) = \frac{1}{4\pi \varepsilon_0} \rb{\frac{Q_1}{R_1} + \frac{Q_2}{R_2}} \end{align} \]电场的分布曲线
-
两球面上的电势差
\[ \begin{align} \dt{V} & = V(R_1) - V(R_2) = \frac{1}{4\pi \varepsilon_0} \rb{\frac{Q_1}{R_1} + \frac{Q_2}{R_2}} - \frac{Q_1 + Q_2}{4\pi \varepsilon_0 R_2} \\ & = \frac{Q_1}{4\pi \varepsilon_0} \rb{\frac{1}{R_1} - \frac{1}{R_2}} \end{align} \]\[ \begin{align} \dt{V} & = V(R_1) - V(R_2) \\ & = \frac{1}{4\pi \varepsilon_0} \rb{\frac{Q_1}{R_1} + \frac{Q_2}{R_2}} - \frac{Q_1 + Q_2}{4\pi \varepsilon_0 R_2} \\ & = \frac{Q_1}{4\pi \varepsilon_0} \rb{\frac{1}{R_1} - \frac{1}{R_2}} \end{align} \]